7 research outputs found

    Urban socioeconomic inequality and biodiversity often converge, but not always: A global meta-analysis

    Get PDF
    It is through urban biodiversity that the majority of humans experience nature on a daily basis. As cities expand globally, it is increasingly important to understand how biodiversity is shaped by human decisions, institutions, and environments. In some cities, research has documented convergence between high socioeconomic status (SES) and high species diversity. Yet, other studies show that residents with low SES live amid high biodiversity or that SES and biodiversity appear unrelated. This study examines the conditions linked to varying types of relationships between SES and biodiversity. We identified and coded 84 case studies from 34 cities in which researchers assessed SES-biodiversity relationships. We used fuzzy-set Qualitative Comparative Analysis (fsQCA) to evaluate combinations of study design and city-level conditions that explain why SES-biodiversity relationships vary city to city and between plants and animals. While the majority of cases demonstrated increased biodiversity in higher SES neighborhoods, we identified circumstances in which inequality in biodiversity distribution was ameliorated or negated by disturbance, urban form, social policy, or collective human preference. Overall, our meta-analysis highlights the contributions of residential and municipal decisions in differentially promoting biodiversity along socioeconomic lines, situated within each city’s environmental and political context. Through identifying conditions under which access to biodiversity is more or less unequal, we call attention to outstanding research questions and raise prospects for better promoting equitable access to biodiversity

    Opportunities and Challenges for Personal Heat Exposure Research.

    No full text

    Genetic architecture facilitates then constrains adaptation in a host-parasite coevolutionary arms race.

    No full text
    In coevolutionary arms races, interacting species impose selection on each other, generating reciprocal adaptations and counter adaptations. This process is typically enhanced by genetic recombination and heterozygosity, but these sources of evolutionary novelty may be secondarily lost when uniparental inheritance evolves to ensure the integrity of sex-linked adaptations. We demonstrate that host-specific egg mimicry in the African cuckoo finch Anomalospiza imberbis is maternally inherited, confirming the validity of an almost century-old hypothesis. We further show that maternal inheritance not only underpins the mimicry of different host species but also additional mimetic diversification that approximates the range of polymorphic egg “signatures” that have evolved within host species as an escalated defense against parasitism. Thus, maternal inheritance has enabled the evolution and maintenance of nested levels of mimetic specialization in a single parasitic species. However, maternal inheritance and the lack of sexual recombination likely disadvantage cuckoo finches by stifling further adaptation in the ongoing arms races with their individual hosts, which we show have retained biparental inheritance of egg phenotypes. The inability to generate novel genetic combinations likely prevents cuckoo finches from mimicking certain host phenotypes that are currently favored by selection (e.g., the olive-green colored eggs laid by some tawny-flanked prinia, Prinia subflava, females). This illustrates an important cost of coding coevolved adaptations on the nonrecombining sex chromosome, which may impede further coevolutionary change by effectively reversing the advantages of sexual reproduction in antagonistic coevolution proposed by the Red Queen hypothesis.BBSRC David Research Fellowship (BB/J014109/1) Royal Society Dorothy Hodgkin Fellowship DST-NRF Centre of Excellence at the FitzPatrick Institute NSF (DEB 0640759

    Opportunities and Challenges for Personal Heat Exposure Research.

    No full text
    BackgroundEnvironmental heat exposure is a public health concern. The impacts of environmental heat on mortality and morbidity at the population scale are well documented, but little is known about specific exposures that individuals experience.ObjectivesThe first objective of this work was to catalyze discussion of the role of personal heat exposure information in research and risk assessment. The second objective was to provide guidance regarding the operationalization of personal heat exposure research methods.DiscussionWe define personal heat exposure as realized contact between a person and an indoor or outdoor environment that poses a risk of increases in body core temperature and/or perceived discomfort. Personal heat exposure can be measured directly with wearable monitors or estimated indirectly through the combination of time-activity and meteorological data sets. Complementary information to understand individual-scale drivers of behavior, susceptibility, and health and comfort outcomes can be collected from additional monitors, surveys, interviews, ethnographic approaches, and additional social and health data sets. Personal exposure research can help reveal the extent of exposure misclassification that occurs when individual exposure to heat is estimated using ambient temperature measured at fixed sites and can provide insights for epidemiological risk assessment concerning extreme heat.ConclusionsPersonal heat exposure research provides more valid and precise insights into how often people encounter heat conditions and when, where, to whom, and why these encounters occur. Published literature on personal heat exposure is limited to date, but existing studies point to opportunities to inform public health practice regarding extreme heat, particularly where fine-scale precision is needed to reduce health consequences of heat exposure. https://doi.org/10.1289/EHP556
    corecore